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Abstract 

Dataflow architectures tolerate long unpredictable com- 
munication delays and support generation and coordi- 
nation of parallel activities directly in hardware, rather 
than assuming that program mapping will cause these 
issues to disappear. However, the proposed mecha- 
nisms are complex and introduce new mapping com- 
plications. This paper presents a greatly simplified ap- 
proach to dataflow execution, called the explicit token 
store (ETS) architecture, and its current realization in 
Monsoon. The essence of dynamic datallow execution 
is captured by a simple transition on state bits associ- 
ated with storage local to a processor. Low-level storage 
management is performed by the compiler in assigning 
nodes to slots in an activation frame, rather than dy- 
namically in hardware. The processor is simple, highly 
pipelined, and quite general. It may be viewed as a 
generalization of a fairly primitive von Neumann archi- 
tecture. Although the addressing capability is restric- 
tive, there is exactly one instruction executed for each 
action on the dataflow graph. Thus, the machine ori- 
ented ETS model provides new understanding of the 
merits and the real cost of direct execution of dataflow 
graphs. 

a parallel machine lacking these features, a program 
must be partitioned into a small number of processes 
that operate almost entirely on local data and rarely 
interact[l0,21]. H owever, if hig‘hly parallel machines 
are to be used in solving problems more complex than 
what is addressed on current supercomputers, it is likely 
they will have to be programmed in a very high level 
language with little explicit programmer management 
of parallelism[7,8], and the behavior of these complex 
applications may be very dynamic. Together, these 
observations suggest that we cannot expect to achieve 
a perfect mapping for many applications that we will 
want to execute on a highly parallel machine, so we 
are studying the design of processors that tolerate an 
imperfect mapping and still obtain high performance. 

1 Introduction 

The Explicit Token Store (ETS) architecture is an un- 
usually simple model of dynamic dataflow execution 
that is realized in Monsoon, a large-scale dataflow 
multiprocessor[27]. A Monsoon processor prototype 
is operational at the MIT Laboratory for Computer 
Science, running large programs compiled from the 
dataflow language Id. A full-scale multiprocessor sys- 
tem is under development[6] in conjunction with Mo- 
torola Inc. Formulation of the ETS architecture be- 
gan in 1986 as an outgrowth of the MIT Tagged-Token 
Dataflow Architecture (TTDA) and was based on a 
family of design goals - some evolutionary, some rev- 
olutionary, and some reactionary. 

Tagged-token dataflow machines achieve this tol- 
erance through sophisticated matching hardware, 
which dynamically schedules operations with available 
operands[2,20,29]. When a token arrives at a processor, 
the ta,g it carries is checked against the tags present 
in the token-store. If a matching token is found, it is 
extracted and the corresponding instruction is enabled 
for execution; otherwise, the incoming token is added to 
the store. This allows for a simple non-blocking proces- 
sor pipeline that can overlap inistructions from closely 
related or completely unrelated computations. It also 
provides a graceful means of integrating asynchronous, 
perhaps misordered, memory responses into the nor- 
mal flow of execution. However, the matching oper- 
ation involves considerable complexity on the critical 
path of instruction scheduling[l.8]. Although progress 
has been made in matching hardware[20,39], our goal 
was to achieve the benefits of matching with a funda- 
mentally simpler mechanism. 

The fundamental properties of the TTDA that we 
wanted to retain included a large synchronization 
namespace, inexpensive synchronization, and tolerance 
to memory and communication latency[9]. These prop 
erties do not improve peak performance, but they dic- 
tate how much of it is actually delivered on com- 
plex applications[5]. To obtain high performance on 

The more subtle problem with the matching 
paradigm is that failure to find a match implicitly allo- 
cates resources within the token store. Thus, in map- 
ping a portion of the computation to a processor, an 
unspecified commitment is placed on the token store of 
that processor and, if this resource becomes overcom- 
mitted, the program may deadlock[l]. If the match is to 
be performed rapidly, we cannot assume this resource 
is so plentiful that it can be wasted. The worst-case 
token storage requirement can be determined on a per- 
code-block basis with sophisticated compiler analysis, 
but the “bottom line” is that this complex mechanism 
fa.ils to simplify resource management. Thus, engineer- 
ing and management concerns led us to consider how 
to make the token-store explicit in the dataflow model. 
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The result is a simple architecture that directly exe- 
cutes dataflow graphs, yet can be understood as a vari- 
ation on a (fairly primitive) von Neumann machine. It 
is simple enough to build and serves to clarify many 
aspects of dataflow execution. 

The sequel describes the ETS architecture and its re- 
alization in Monsoon. Section 2 outlines the basic exe- 
cution model. Section 3 describes the Monsoon imple- 
mentation. Sections 4 and 5 provide preliminary mea- 
surements of programs on this machine and reflections 
on the evolution of dataflow architectures. 

2 ETS Architecture 

The central idea in the ETS model is that storage for 
tokens is dynamically allocated in sizable blocks, with 
detailed usage of locations within a block determined at 
compile time. When a function is invoked, an activation 
frame is allocated explicitly, as part of the calling con- 
vention, to provide storage for all tokens generated by 
the invocation. Arcs in the graph for the function are 
statically mapped onto slots in the frame by coloring 
the graph, much like modern register assignment[l2]. 
The basic structure of an executing program is illus- 
trated in Figure 1. A aolcen comprises a value, a pointer 
to the instruction to execute (IP), and a pointer to an 
activation frame (FP). The latter two form the tug. The 
instruction fetched from location IP specifies an opcode 
(e.g., SUB), the offset in the activation frame where the 
match will take place (e.g., FP+3), and one or more des- 
tination instructions that will receive the result of the 
operation (e.g., instructions IP+ 1 and IP+~). An input 
port (left/right) is specified with each destination. 

Each frame slot has associated presence bits specify- 
ing the disposition of the slot. The dynamic dataflow 
firing rvle is realized by a simple state transition on 
these presence bits, as illustrated in Figure 1. If the 
slot is empty, the value on the token is deposited in 
the slot (making it full) and no further processing of 
the instruction takes place. If it is full, the value is ex- 
tracted (leaving the slot empty) and the corresponding 
instruction is executed, producing one or more new to- 
kens. Observe, each token causes a.11 instruction to be 
initiated, but when an operand is missing the instruc- 
tion degenerates to a store of the one ava.ilable operand. 
Initially, all slots in a frame are empty and upon com- 
pletion of the activation they will have returned to that 
state. The graphs generated by the compiler include an 
explicit release of the activation frame upon completion 
of the invocation. 

The ETS activation frame is obviously similar to 
a conventional call frame. The differences are that 
presence-bits are associated with each slot and that an 
executing program generates a lree of activation frames, 
rather than a stack, because a procedure may generate 
parallel calls where the caller and the callees execute 

concurrently. The concurrent callees may themselves 
generate parallel calls, and so on. For loops, several 
frames are allocated, so that many iterations can exe- 
cute concurrently[l,l3], and reused efficiently. Graphs 
are compiled such that a frame is not reused until the 
previous uses of it are complete. 

The ETS execution model is easily formalized in 
terms of a linear array of locations, M, such that the P 
location, M[i], contains q.v, where v is a fixed size value 
and q is the status of location M[i]. The status and 
value parts of a location may be manipulated indepen- 
dently. The one operation defined on the status part 
is an atomic read-modify-write, M[i].q +- S(M[i].q), 
where S is a simple transition function. Three atomic 
operations are defined on the value part: read, write, 
exchange. In addition to the store, the state of the ma- 
chine includes a set of tokens. The pair of pointers FPJP 

is a valid data value, so indirect references and control 
transfers are possible. Every token in the set of unpro- 
cessed tokens represents an operation that is ready to 
be executed. Thus, a parallel machine step involves se- 
lecting and processing some subset of the unprocessed 
tokens. This generates a set of updates to the store and 
new unprocessed tokens. The model is inherently par- 
allel, as any number of operations may be performed 
in a step. Of course, in realizing the model, additional 
constraints will have to be imposed. 

ETS instructions are essentially a l-address form, in 
that one operand is the value carried on the token and 
the second is the contents of the location specified by 
a simple effective address calculation, e.g., FP + r. The 
value part of the token functions as the accumulator, 
IP as the program counter, and FP as an index regis- 
ter. The unusual quality of the ETS instruction is that 
it may also specify a simple synchronization operation 
and multiple successors. The synchronization camp+ 
nent is merely a state transition on the presence bits 
associated with the memory operand. However, the 
state transition affects the behavior of the instruction 
as a whole, possibly nullifying the continuation. 

The simplest continuation is a single successor in the 
same code-block, specified relative to IP; this corre- 
sponds to a node with a single output arc. The fork 
continuation allows multiple tokens to be produced each 
carrying the result va.lue and FP from the input token, 
but with different IPS, derived from that on the input 
token by a simple offset. To represent conditionals, 
the offset is selected based on one of the input values. 
To support the function call and return mechanism, 
the &tract Tag operation places the tag for a node 
(FP.IP+s), where s is a. relative instruction offset, into 
the value part of the result token and Send uses the 
va.lue part of one input as a result ta.g. Thus, program 
code is re-entra.nt. 

The ETS is a data.flow a.rchitect8ure, in that it di- 
rcctly executes dynamic dataflow graphs. Operations 
in a tagged-token dataflow architecture correspond one- 
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to-one with operations in the ETS architecture. The 
data-driven scheduling mechanism is much simpler in 
the latter case, because the rendezvous point for the 
two operands is defined by a simple address calcula- 
tion, rather than hash and match logic. However, mak- 
ing the token store explicit also makes the execution 
model more general. Using other state transitions on 
the presence-bits, it directly supports important exten- 
sions to the dynamic dataflow model, including loop 
constants, I-structures, and accumulators. By simply 
ignoring the presence bits, (multiple) imperative con- 
trol threads are supported, as well. The overall execu- 
tion schedule of an ETS program depends on a variety 
of run-time factors, however, by using dataflow graphs 
as a programming methodology, we are guaranteed that 
all execution schedules produce the same result. 

3 Monsoon 

Monsoon is a general purpose multiprocessor that in- 
corporates an explicit token store. A Monsoon machine 
includes a collection of pipelined processing elements 
(PE’s), connected via a multistage packet switch net- 
work to each other and to a set of interleaved I-structure 
memory modules (IS’s), as shown in Figure 2. Mes- 
sages in the interprocessor network are simply tokens- 
precisely the format used within the PE and IS. Thus, 
the hardware makes no distinction between inter- and 
intra-processor communication. 

The ETS model suggests a natural form of locality; 
a given activation frame resides entirely on one PE. A 
code-block activation is dynamically bound to a par- 
ticular processing element at invocation-time and exe- 
cutes to completion on that PE. Each concurrent iter- 
ation of a loop is assigned a separate activation frame, 
and these frames may be on separate PEs. This strat- 
egy reduces network traffic without squandering fine- 
grain parallelism-the parallelism within an activation 
is used to keep the processor pipeline full. The policy of 
mapping an activation frame to a single PE implies that 
interprocessor token traffic is only generated by data 
structure reads and writes and transmission of proce- 
dure arguments and return values. The interprocessor 
network is therefore appropriately sized to handle this 
fraction (less than 30%) of the total number of tokens 
produced during the course of a computation. 

A Monsoon PE is a highly pipelined processor. On 
each processor cycle a token may enter the top of the 
pipeline and, after eight cycles, zero, one or two tokens 
emerge from the bottoml. In the process, an instruc- 
tion is fetched from instruction memory, which reads or 

1 A processor cycle usually corresponds to a single processor 
clock, but may extend to multiple clocks during certain opera- 
tions that cause a pipeline stall, e.g., a frame-store exchange or a 
floating point divide. Tokens advance from one stage to the next 
only at cycle boundaries. 

writes a word in the data memory called fiume-store. 
One of the output tokens can be recirculated, i.e., im- 
mediately placed back into the top of the pipeline. To- 
kens produced by the pipeline that are not recirculated 
may be inserted into one of two token queues or deliv- 
ered to the interprocessor network and automatically 
routed to the correct PE. 

3.1 Machine Formats 

A Monsoon token is a compact descriptor of computa- 
tion state comprising a tag and a value. A value can be 
a 64bit signed integer, an IEEE double precision float- 
iug point number, a bit field or boolean, a data memory 
pointer, or a tag. 

As in the ETS, a Monsoon tag encodes two point- 
ers: one to the instruction to execute and one to the 
activation frame that provides the context in which to 
attempt execution of that instruction. However, since 
activation frames do not span PEs, the frame pointer 
and instruction pointer are conveniently segmented by 
processing element, TAG = PE:(FP.IP), where PE is the 
processing element number and IP and FP are local ad- 
dresses on processor PE. Tags and values are both 
64-bit quantities and each is appended with eight ad- 
ditional bits of run-time type information. A token 
is therefore a 144-bit quantity. For tags, the size of 
the PE field is eight bits, and FP and IP are 24 bits 
each. The machine automatically routes tokens to the 
specifed PE, whereupon instruction IP is fetched and 
frame FP is accessed. The most significant bit of the 
instruction pointer encodes a PORT bit which, for two 
input operations, establishes the left/right orientation 
of the operands. All activation frame references are lo- 
cal and are considered non-blocking-activation frame 
reads and writes can take place within the processor 
pipeline without introducing arbitrary waits. 

A data structure pointer encodes an address on a pro- 
cessing element or I-structure memory module. Point- 
ers are represented in a ‘normalized” format as the 
segmented address PE:OFFSET, where PE denotes the 
processing element or I-structure module number and 
OFFSET is a local address on the PE or module. Addi- 
tionally, pointers contain interleave information, which 
describes how the data structure is spread over a collec- 
tion of modules. The interleave information describes a 
subdomain[4], i.e., collection of 2” processors or mem- 
ory modules which starts on a modulo 2” PE number 
boundary. If n = 0 then increments to the pointer will 
map onto the same PE. If n = 1 then increments to the 
pointer alternate between PE and PE+~, and so on. 

Following the ETS model, the instruction dictates 
the offset in the frame, the kind of matching operation 
that will take place (i.e., the state transition function 
on a word in frame-store), the operation performed in 
the ALU and the way that new result tokens will be 
formed. All Monsoon instructions are of uniform, 32- 
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bit format, with a 1Zbit opcode, a lo-bit operand, and 
a IO-bit destination field. The operand field, r, can be 
used as a frame-relative address in local frame store, 
FP + T, or as an absolute local address, to access lit- 
eral constants and procedure linkage information kept 
in low memory by convention. The operand and desti- 
nation fields can be combined to form a 20-bit address, 
as well. Every instruction can have up to two destina- 
tions, encoded as an adjustment to IP with an explicit 
PORT value. When an operand specifier is used, one of 
the destinations is IP+ 1. The opcode completely deter- 
mines the interpretation of the other two fields. There 
are three presence (or status) bits associated with each 
word of memory to support data-driven scheduling. 

3.2 Pipeline operation 

The right-hand portion of Figure 2 describes the inter- 
nal pipeline of the Monsoon processor, which operates 
as follows. (1) The IP from the incoming token is used 
as an address into local instruction memory. (2) The ef- 
fective address of a location in frame-store is computed 
(FP + r or r>. (3) The three presence bits associated 
with thii frame-store location are read, modified (by a 
table lookup), and written back to the same location. 
The state transition function represented by the lookup 
depends on the port bit on the incoming token and the 
instruction opcode. It produces the new presence bits 
and two control signals for subsequent pipeline stages: 
one dictates whether the operation on the value part 
of the associated frame-store location is a read, write, 
exchange or no-op, and the other suppresses the gen- 
eration of result tokens. For example, when the first 
token for a two-input operator is processed, the lookup 
specifies a write to the frame-store and supression of 
results. (4) Depending on the result of the lookup, the 
value part of the specified frame-store location is ig- 
nored, read, written, or exchanged with the value on 
the token. 

The ALU represents three stages and operates in par- 
allel with tag generation. (5) The value on the token 
and the value extracted from the frame-store are sorted 
into left and right values using the port bit of the incom- 
ing token. It is also possible to introduce the incoming 
tag as one of the ALU operands. (6,7) The operands 
are processed by one of the function units: a floating 
point/integer unit, a specialized pointer/tag arithmetic 
unit, a machine control unit or a type extract/set unit. 
Concurrent with the final ALU processing, two new re- 
sult tags are computed by the next address generators. 

(8) Finally, the form-token stage creates result tokens 
by concatenating the computed tags with the ALU re- 
sult. During inter-procedure communication (i.e. call 
and return values and structure memory operations) 
the result tag is actually computed by the ALU. The 
form-token multiplexor therefore allows the ALU re- 
sult to be the tag of one of the tokens. An extra result 

value, a delayed version of the “right” value, is also 
available to the form-token multiplexor. This stage de- 
tects whether PE of a result token tag is equal to the 
present processing element number. If not, the token 
is forwarded to the network and routed to the correct 
processing element or I-structure module. One of the 
(local) result tokens may be recirculated directly to the 
instruction fetch stage. If two local tokens are created, 
one of the result tokens is placed onto either the sys- 
tem or user token queue. If no tokens are created then 
a token is dequeued from one of the token queues for 
processing. 

Consider the processing of a tw*input operator. Ei- 
ther the left or right token may be processed first. 
The first token to be processed enters the pipeline and 
fetches the instruction pointed to by IP. During the ef- 
fective address stage the location in frame-store where 
the match will take place is computed. The associated 
set of presence bits are examined and found to be in the 
empty state. The presence state is thus set to full and 
the incoming value is written into the frame-store loca- 
tion during the frame-store stage. Further processing 
of the token is suppressed because the other operand 
has yet to arrive. This “bubbles” the pipeline for the 
remaining ALU stages; no tokens are produced during 
form-token, permitting a token to be removed from one 
of the token queues for processing. 

The second token to be processed enters the pipeline 
and fetches the same instruction. It therefore computes 
the same effective address. This time, however, the 
presence state is found to be full, so the frame-store 
location (which now contains the value of the first to- 
ken) is read and both values are processed by the ALU. 
Finally, one or two result, tokens are created during the 
form-token stage. 

4 Evaluation 

A single processor Monsoon prototype has been op- 
erational at the MIT Laboratory for Computer Sci- 
ence since October 1988 and a second prototype is 
due to be delivered to the Los Alamos National Lab- 
oratories for further evaluation. Except for an inter- 
processor network connection, the prototype employs 
the synchronous eight stage pipeline and 72-bit data- 
paths presented in Section 3. The memory sizes are 
fairly modest: 128KWords (72 bits) of frame-store and 
128KWords (32 bits) of instruction memory. The pro- 
totype was designed to process six million tokens per 
second, although we typically clock at one-half this iate 
for reliability reasons. The processor is hosted via a 
NuBus adapter in a Texas Instruments Explorer lisp 
machine. The compiler and loader are written in Com- 
mon Lisp and run on the host lisp machine whereas the 
runtime activation and heap memory management ker- 
nels are written in Id and execute directly on Monsoon. 
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Runtime management has been a particular challenge 
for large programs because, lacking an I-structure mem- 
ory module, all activation frames and heap data struc- 
tures are drawn from the same frame-store memory. 
We presently use 128 word activation frames. Free ac- 
tivation frames are kept on a shared free-list, so the 
frame ah and release operators expand to three in- 
structions each. Half of the frame-store memory is ded- 
icated to the heap and managed by allocate and deallo- 
cate library routines. Two experimental memory man- 
agers have been developed for the prototype: a simple 
first-fit manager (with coalescing) and a more sophisti- 
cated buddy system that permits simultaneous alloca- 
tions and deallocations against the various free-lists. 

In spite of the serious memory limitations, some sur- 
prisingly large codes have been executed on Monsoon, 
including GAMTEB, a monte car10 histogramming sim- 
ulation of photon transport and scattering in carbon 
cylinders. This code is heavily recursive and relatively 
difficult to vectorize. On Monsoon, a 40,000 particle 
simulation executed a little over one billion instruc- 
tions. For comparison purposes, a scalar Fortran ver- 
sion of GAMTEB executes 40,000 particles in 250 mil- 
lion instructions on a CRAY-XMP. We have found that 
about 50% of Monsoon instructions were incurred by 
the memory management system (the Fortran version 
uses static memory allocation). The remaining over- 
head of about a factor of two when compared with For- 
tran is consistent with our experience with other codes 
on the MIT tagged token dataflow architecture [3]. We 
are encouraged by these preliminary data and expect 
marked future improvements in the memory manage- 
ment system and the overall dynamic efficiency of com- 
piled code. 

One of the non-scientific codes we have experimented 
with is a simulated annealing approach to the traveling 
salesperson problem, written in Id, but exercising user- 
defined objet t managers. The following statistics are 
typical of an iteration from a tour of fifty cities. 

Fifty City TSP Tour on MO 
Instruction Class 1 Total Cycles 

Fanouts and Identities 1 27,507,282 
Arithmetic Operations 6,148,860 
ALU Bubbles 20,148,890 
I-Fetch Operations 3,590,992 
I-Store Operations 285,790 
Other Operations 8,902,202 
Idles 3.503.494 

L 

oon 
Percentages 

39.25 
a.77 

28.75 
5.12 
0.41 

12.70 
5.00 

1 

into a frame slot and and further processing of instruc- 
tion is suppressed. Idling occurs during a cycle where 
no tokens are produced and the token queues are empty. 

The current Monsoon compiler i.s a retargeted version 
of the Id to TTDA graph compiler[30] and essen,tially 
follows a transliteration of TTDA instructions into the 
Monsoon instruction set. It performs the static assign- 
ment of nodes to frame slots, but takes little advantage 
of the additional power of the ETlS model. As such, we 
view the current application base as a proof of principle 
more than as a statement of potential performance. 

We are now working with the Motorola Microcom- 
puter Division and the Motorola Cambridge Research 
Center to develop multiprocessor Monsoon prototypes. 
The new processors are similar to the first prot+ 
type but are faster, (10 million tokens per second) 
have somewhat larger frame storage, (256KWords to 
1MWord) and, significantly, have dedicated I-structure 
memory modules (4MWords) and a high-speed multi- 
stage packet switch (100 Mbytes/set/port). Versions 
comprising eight processors and eight memory modules 
and four Unix-based I/O processors should be opera- 
tional in the Spring of 1991. Motorola will also be sup- 
porting a Unix-based single processor/single memory 
module workstation for Id program development. 

The ETS activation frame functions much like a con- 
ventional register set and, by ignoring the presence-bits, 
can be accessed as such. Of course, a single instruc- 
tion of a three-address von Neumann processor could 
read two registers, perform an operation and write the 
result register, whereas Monsoo.n takes three instruc- 
tions to accomplish the same action. Monsoon per- 
mits only a single frame-store operation per cycle. In 
a very real sense, the value part of a token corresponds 
to an accumulator-it can be loaded, stored, or oper- 
ated upon, in combination with .the local frame. How- 
ever, from a hardware engineering viewpoint, the sin- 
gle port access to frame-store is an important restric- 
tion, since the frame-store simultaneously holds thou- 
sands of activation frames; three-port access would be 
prohibitively expensive. Competitive implementations 
of a Monsoon-like processor would certainly employ a 
cache of local frame memory; nonetheless, the single 
port frame-store suggests what might be an inherent 
inefficiency in the ETS model. 

The future architectural development of Monsoon 
will continue to explore fundamental improvements in 
dynamic instruction efficiency. Part of this work ad- 
dresses a basic mismatch in the Monsoon pipeline, that 
is characteristic of dataflow architectures. Each twc+ 
input instruction requires twooperations against frame- 

Fanout and identities are used for replicating data store, and thus two processor c,ycles, but only utilizes 
values and termination detection. These are roughly the ALU with the arrival of the second token. As sug- 
equivalent to move instructions in von Neumann me gested by the statistics above, approximately 30% of 
chines. Arithmetic operations include both integer and the ALU cycles are consumed by this mismatch (ALU 
floating point operations. ALU bubbles occur when the bubbles). Observe, that a sequence of instructions that 
first-arriving operand of a two-input operator is written produce one local result at each step follows the direct 
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recirculation path, thus occupying one of eight proces- 
sor interleaves. The new version of Monsoon provides 
a 3 x 72-bit four-port (two read, two write) tempo- 
rary register set for each interleave. For simple arith- 
metic expressions, the temporary set can improve the 
dynamic instruction efficiency (the number cycles re- 
quired to compute the expression) by a factor of two. 
Note, the temporaries are valid only as long as a thread 
has a recirculating token; when a token is first popped 
from a queue, the values of the temporaries are inde- 
terminate. The temporaries are also invalidated when 
performing a split-phase read. These temporaries are 
very similar to the register set in Iannucci’s hybrid ar- 
chitecture [23]. 

5 Related Work 

In our view, the beauty of the ETS model and its 
realization in Monsoon lies in its simplicity, not its 
novelty. It draws heavily on developments in dy- 
namic and static dataflow architectures, yet demystifies 
the data.flow execution model be providing a simple, 
concrete, machine-oriented formulation - one simple 
enough to build. Activation frames are certainly not a 
new idea. The use of presence-bits to detect enabled 
operations is represented in the earliest static dataflow 
architectures[l5,16,28]. In those designs, instructions 
and operand slots were combined into an instruction 
template, which was delivered to a function unit when it 
was determined that the operand slots were full. Pres- 
ence detection was performed by an autonomous unit, 
functioning asynchronously with the rest of the system, 
rather than simply treated as a stage in an instruc- 
tion pipeline. Also, the utilization of the activity store 
was poor, because storage was preallocated for every 
operand slot in the entire program, even though the 
fraction of these containing data at any time is gen- 
erally small. Other drawbacks included the complex 
firing rule of the merge operator, the need for acknowl- 
edgement arcs to ensure one token per sac, loss of par- 
allelism due to artificial dependences, and the inability 
to support general recursion. 

Tagged-token architectures addressed these problems 
by naming each activity in terms of its role in the com- 
putation, rather than by the resources used to perform 
the activity. Iteration and recursion is easily imple- 
mented by assigning new names for each activation of 
the loop or function. This eliminated the troublesome 
merge operator, the acknowledgement arcs, and the ar- 
tificial dependences. Storage for operands was allocated 
“as needed” via the matching mechanism. In our own 
efforts to refine the MIT Tagged-Token Dataflow Archi- 
tecture, the association between the name for an activ- 
ity and the resources devoted to performing the activity 
became ever more immediate. Once state information 
was directly associated with each activation, it was a 

small step to eliminate the matching store. However, 
before it made sense to represent storage for operands 
directly, it was necessary to ensure that the utilization 
would be reasonable. This involved developments in 
compilation of loops[l3], as well as frame-slot mapping. 

A separate line of development generalized the static 
model by dynamically splicing the graph to support 
recursion[32]. VIM[17] advances these ideas by sepa- 
rating the program and data portions of the instruc- 
tion template, so the splicing operations could be imple- 
mented by allocating an operand frame and providing 
a form of token indirection. Representation of itera- 
tion in this context presents problems and is generally 
eliminated in favor of tail-recursion. 

The ETS model pulls these three areas together in 
an elegant fashion. The power of the tagged-token ap- 
proach is provided with a simple mechanism, expressed 
in familiar terms. The mechanism is quite close to 
that which is used to support I-structures and pro- 
vides a uniform means fo representing synchronizing 
data structure operations. Since the instruction deter- 
mines how the operand store is accessed, it is straight- 
forward to realize imperative control threads as well. 

Graph reduction architectures provide an additional 
reference point, contemporary with the development of 
dataflow architectures and addressing a similar class 
of languages[l4,25]. The function application mecha- 
nism under a reduction model closely resembles graph 
splicing, in that a copy of the function body is pro- 
duced and arguments substituted where formal param- 
eters appear. The copy of the function body can be 
viewed as an activation frame, the slots of which con- 
tain references to chunks of computation that will even- 
tually be reduced to a value. In this sense, state in- 
formation is associated with each slot in the frame to 
indicate whether it is reduced or not. Parallel graph 
reduction architectures require additional mechanisms 
for recording requests made for a value while it is being 
reduced. By demanding values before they are actually 
needed, data-driven scheduling can be simulated[24]. 
The rather primitive ETS mechanism can be used to 
support demand-driven execution as we11[22], although 
we have not pursued that direction extensively. A de- 
tailed comparison between the two execution models is 
beyond the scope of this paper. 

Several researchers have suggested that dataflow and 
von Neumann machines lie at two ends of an archi- 
tectural spectrum[11,19,23,26]. In reflecting upon the 
development of Monsoon, our view is somewhat dif- 
ferent. Dataflow architectures and modern RISC ma 
chines represent orthogonal generalizations of the sin- 
gle accumulator “von Neumann” machine. The main- 
stream architectural trend enhances the power of a sin- 
gle execution thread with multiple addresses per oper- 
ation. Dataflow graphs essentially represent multiple 
l-address execution threads, with a very simple syn- 
chronization paradigm. Having made the transition 
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from propagating values through graphs to “virtual” 
processors, we can begin to address the question of 
what is the best processor organization to “virtualize.” 
Certainly there are gains to be made by incorporat- 
ing more powerful operand specification, but this must 
be weighed against additional complexity in synchro- 
nization. Recently, attention has been paid to multi- 
threaded variants of a full 3-address load/store archi- 
tecture to tolerate latency on a cache miss[31]. The 
proposed techniques range from a four-port register file 
to complete replication of the data path. Thus, consid- 
erable complexity is contemplated to address only the 
latency aspect of parallel computing. It is not obvious 
that a simple, inexpensive synchronization mechanism 
can be provided in this context. It is likely that the op- 
timal building block for scalable, general purpose par- 
allel computers will combine the two major directions 
of architectural evolution, but may not be extreme in 
either direction. 
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