
www.manaraa.com

Monsoon: an Explicit Token-Store Architecture

Gregory M. Papadopoulos
Laboratory for Computer Science

Masachusetts Institute of Technology

David E. Culler
Computer Science Division

University of California, Berkeley

Abstract

Dataflow architectures tolerate long unpredictable com-
munication delays and support generation and coordi-
nation of parallel activities directly in hardware, rather
than assuming that program mapping will cause these
issues to disappear. However, the proposed mecha-
nisms are complex and introduce new mapping com-
plications. This paper presents a greatly simplified ap-
proach to dataflow execution, called the explicit token
store (ETS) architecture, and its current realization in
Monsoon. The essence of dynamic datallow execution
is captured by a simple transition on state bits associ-
ated with storage local to a processor. Low-level storage
management is performed by the compiler in assigning
nodes to slots in an activation frame, rather than dy-
namically in hardware. The processor is simple, highly
pipelined, and quite general. It may be viewed as a
generalization of a fairly primitive von Neumann archi-
tecture. Although the addressing capability is restric-
tive, there is exactly one instruction executed for each
action on the dataflow graph. Thus, the machine ori-
ented ETS model provides new understanding of the
merits and the real cost of direct execution of dataflow
graphs.

a parallel machine lacking these features, a program
must be partitioned into a small number of processes
that operate almost entirely on local data and rarely
interact[l0,21]. H owever, if hig‘hly parallel machines
are to be used in solving problems more complex than
what is addressed on current supercomputers, it is likely
they will have to be programmed in a very high level
language with little explicit programmer management
of parallelism[7,8], and the behavior of these complex
applications may be very dynamic. Together, these
observations suggest that we cannot expect to achieve
a perfect mapping for many applications that we will
want to execute on a highly parallel machine, so we
are studying the design of processors that tolerate an
imperfect mapping and still obtain high performance.

1 Introduction

The Explicit Token Store (ETS) architecture is an un-
usually simple model of dynamic dataflow execution
that is realized in Monsoon, a large-scale dataflow
multiprocessor[27]. A Monsoon processor prototype
is operational at the MIT Laboratory for Computer
Science, running large programs compiled from the
dataflow language Id. A full-scale multiprocessor sys-
tem is under development[6] in conjunction with Mo-
torola Inc. Formulation of the ETS architecture be-
gan in 1986 as an outgrowth of the MIT Tagged-Token
Dataflow Architecture (TTDA) and was based on a
family of design goals - some evolutionary, some rev-
olutionary, and some reactionary.

Tagged-token dataflow machines achieve this tol-
erance through sophisticated matching hardware,
which dynamically schedules operations with available
operands[2,20,29]. When a token arrives at a processor,
the ta,g it carries is checked against the tags present
in the token-store. If a matching token is found, it is
extracted and the corresponding instruction is enabled
for execution; otherwise, the incoming token is added to
the store. This allows for a simple non-blocking proces-
sor pipeline that can overlap inistructions from closely
related or completely unrelated computations. It also
provides a graceful means of integrating asynchronous,
perhaps misordered, memory responses into the nor-
mal flow of execution. However, the matching oper-
ation involves considerable complexity on the critical
path of instruction scheduling[l.8]. Although progress
has been made in matching hardware[20,39], our goal
was to achieve the benefits of matching with a funda-
mentally simpler mechanism.

The fundamental properties of the TTDA that we
wanted to retain included a large synchronization
namespace, inexpensive synchronization, and tolerance
to memory and communication latency[9]. These prop
erties do not improve peak performance, but they dic-
tate how much of it is actually delivered on com-
plex applications[5]. To obtain high performance on

The more subtle problem with the matching
paradigm is that failure to find a match implicitly allo-
cates resources within the token store. Thus, in map-
ping a portion of the computation to a processor, an
unspecified commitment is placed on the token store of
that processor and, if this resource becomes overcom-
mitted, the program may deadlock[l]. If the match is to
be performed rapidly, we cannot assume this resource
is so plentiful that it can be wasted. The worst-case
token storage requirement can be determined on a per-
code-block basis with sophisticated compiler analysis,
but the “bottom line” is that this complex mechanism
fa.ils to simplify resource management. Thus, engineer-
ing and management concerns led us to consider how
to make the token-store explicit in the dataflow model.

CH2887-8/90/0000/0082$01.00 0 1990 IEEE 82

www.manaraa.com

The result is a simple architecture that directly exe-
cutes dataflow graphs, yet can be understood as a vari-
ation on a (fairly primitive) von Neumann machine. It
is simple enough to build and serves to clarify many
aspects of dataflow execution.

The sequel describes the ETS architecture and its re-
alization in Monsoon. Section 2 outlines the basic exe-
cution model. Section 3 describes the Monsoon imple-
mentation. Sections 4 and 5 provide preliminary mea-
surements of programs on this machine and reflections
on the evolution of dataflow architectures.

2 ETS Architecture

The central idea in the ETS model is that storage for
tokens is dynamically allocated in sizable blocks, with
detailed usage of locations within a block determined at
compile time. When a function is invoked, an activation
frame is allocated explicitly, as part of the calling con-
vention, to provide storage for all tokens generated by
the invocation. Arcs in the graph for the function are
statically mapped onto slots in the frame by coloring
the graph, much like modern register assignment[l2].
The basic structure of an executing program is illus-
trated in Figure 1. A aolcen comprises a value, a pointer
to the instruction to execute (IP), and a pointer to an
activation frame (FP). The latter two form the tug. The
instruction fetched from location IP specifies an opcode
(e.g., SUB), the offset in the activation frame where the
match will take place (e.g., FP+3), and one or more des-
tination instructions that will receive the result of the
operation (e.g., instructions IP+ 1 and IP+~). An input
port (left/right) is specified with each destination.

Each frame slot has associated presence bits specify-
ing the disposition of the slot. The dynamic dataflow
firing rvle is realized by a simple state transition on
these presence bits, as illustrated in Figure 1. If the
slot is empty, the value on the token is deposited in
the slot (making it full) and no further processing of
the instruction takes place. If it is full, the value is ex-
tracted (leaving the slot empty) and the corresponding
instruction is executed, producing one or more new to-
kens. Observe, each token causes a.11 instruction to be
initiated, but when an operand is missing the instruc-
tion degenerates to a store of the one ava.ilable operand.
Initially, all slots in a frame are empty and upon com-
pletion of the activation they will have returned to that
state. The graphs generated by the compiler include an
explicit release of the activation frame upon completion
of the invocation.

The ETS activation frame is obviously similar to
a conventional call frame. The differences are that
presence-bits are associated with each slot and that an
executing program generates a lree of activation frames,
rather than a stack, because a procedure may generate
parallel calls where the caller and the callees execute

concurrently. The concurrent callees may themselves
generate parallel calls, and so on. For loops, several
frames are allocated, so that many iterations can exe-
cute concurrently[l,l3], and reused efficiently. Graphs
are compiled such that a frame is not reused until the
previous uses of it are complete.

The ETS execution model is easily formalized in
terms of a linear array of locations, M, such that the P
location, M[i], contains q.v, where v is a fixed size value
and q is the status of location M[i]. The status and
value parts of a location may be manipulated indepen-
dently. The one operation defined on the status part
is an atomic read-modify-write, M[i].q +- S(M[i].q),
where S is a simple transition function. Three atomic
operations are defined on the value part: read, write,
exchange. In addition to the store, the state of the ma-
chine includes a set of tokens. The pair of pointers FPJP

is a valid data value, so indirect references and control
transfers are possible. Every token in the set of unpro-
cessed tokens represents an operation that is ready to
be executed. Thus, a parallel machine step involves se-
lecting and processing some subset of the unprocessed
tokens. This generates a set of updates to the store and
new unprocessed tokens. The model is inherently par-
allel, as any number of operations may be performed
in a step. Of course, in realizing the model, additional
constraints will have to be imposed.

ETS instructions are essentially a l-address form, in
that one operand is the value carried on the token and
the second is the contents of the location specified by
a simple effective address calculation, e.g., FP + r. The
value part of the token functions as the accumulator,
IP as the program counter, and FP as an index regis-
ter. The unusual quality of the ETS instruction is that
it may also specify a simple synchronization operation
and multiple successors. The synchronization camp+
nent is merely a state transition on the presence bits
associated with the memory operand. However, the
state transition affects the behavior of the instruction
as a whole, possibly nullifying the continuation.

The simplest continuation is a single successor in the
same code-block, specified relative to IP; this corre-
sponds to a node with a single output arc. The fork
continuation allows multiple tokens to be produced each
carrying the result va.lue and FP from the input token,
but with different IPS, derived from that on the input
token by a simple offset. To represent conditionals,
the offset is selected based on one of the input values.
To support the function call and return mechanism,
the &tract Tag operation places the tag for a node
(FP.IP+s), where s is a. relative instruction offset, into
the value part of the result token and Send uses the
va.lue part of one input as a result ta.g. Thus, program
code is re-entra.nt.

The ETS is a data.flow a.rchitect8ure, in that it di-
rcctly executes dynamic dataflow graphs. Operations
in a tagged-token dataflow architecture correspond one-

www.manaraa.com

Code-Block Activation Instruction Memory
. ..~ Oocode r dests

:

:

I

:

:

:

:

:

i

-:

:

Frame Memory

<FP.IP,

x SUB

write ,..-..
, l .

:
‘.

:

,3.f4an i i a : : : : : : : :. ix SUB

-*.* -...
l .

pq pgji

First Token Arrives : .
:

Presence Bifi 4-j

Value-part of token wriften info frame;
Presence bits set;
No tokens generated.

&arable, Relocatable
Instruction Texi for
Code-Block

Rwhme-Allocated
Activation Frame
For Code E Iock

j(~~!=f&&;$$?~~
read...‘*
***.... -----

. . f 8 ..-.-..*.-..--.
u

. ,..I i:r. m . ..m. .m...- II
Second Token Arrives

Value-part read from frame;
Presence bits reset;
Operalion peflormed and resull tokens generated.

Figure 1: ETS Representation of an Executing Dataflow Program.

84

www.manaraa.com

to-one with operations in the ETS architecture. The
data-driven scheduling mechanism is much simpler in
the latter case, because the rendezvous point for the
two operands is defined by a simple address calcula-
tion, rather than hash and match logic. However, mak-
ing the token store explicit also makes the execution
model more general. Using other state transitions on
the presence-bits, it directly supports important exten-
sions to the dynamic dataflow model, including loop
constants, I-structures, and accumulators. By simply
ignoring the presence bits, (multiple) imperative con-
trol threads are supported, as well. The overall execu-
tion schedule of an ETS program depends on a variety
of run-time factors, however, by using dataflow graphs
as a programming methodology, we are guaranteed that
all execution schedules produce the same result.

3 Monsoon

Monsoon is a general purpose multiprocessor that in-
corporates an explicit token store. A Monsoon machine
includes a collection of pipelined processing elements
(PE’s), connected via a multistage packet switch net-
work to each other and to a set of interleaved I-structure
memory modules (IS’s), as shown in Figure 2. Mes-
sages in the interprocessor network are simply tokens-
precisely the format used within the PE and IS. Thus,
the hardware makes no distinction between inter- and
intra-processor communication.

The ETS model suggests a natural form of locality;
a given activation frame resides entirely on one PE. A
code-block activation is dynamically bound to a par-
ticular processing element at invocation-time and exe-
cutes to completion on that PE. Each concurrent iter-
ation of a loop is assigned a separate activation frame,
and these frames may be on separate PEs. This strat-
egy reduces network traffic without squandering fine-
grain parallelism-the parallelism within an activation
is used to keep the processor pipeline full. The policy of
mapping an activation frame to a single PE implies that
interprocessor token traffic is only generated by data
structure reads and writes and transmission of proce-
dure arguments and return values. The interprocessor
network is therefore appropriately sized to handle this
fraction (less than 30%) of the total number of tokens
produced during the course of a computation.

A Monsoon PE is a highly pipelined processor. On
each processor cycle a token may enter the top of the
pipeline and, after eight cycles, zero, one or two tokens
emerge from the bottoml. In the process, an instruc-
tion is fetched from instruction memory, which reads or

1 A processor cycle usually corresponds to a single processor
clock, but may extend to multiple clocks during certain opera-
tions that cause a pipeline stall, e.g., a frame-store exchange or a
floating point divide. Tokens advance from one stage to the next
only at cycle boundaries.

writes a word in the data memory called fiume-store.
One of the output tokens can be recirculated, i.e., im-
mediately placed back into the top of the pipeline. To-
kens produced by the pipeline that are not recirculated
may be inserted into one of two token queues or deliv-
ered to the interprocessor network and automatically
routed to the correct PE.

3.1 Machine Formats

A Monsoon token is a compact descriptor of computa-
tion state comprising a tag and a value. A value can be
a 64bit signed integer, an IEEE double precision float-
iug point number, a bit field or boolean, a data memory
pointer, or a tag.

As in the ETS, a Monsoon tag encodes two point-
ers: one to the instruction to execute and one to the
activation frame that provides the context in which to
attempt execution of that instruction. However, since
activation frames do not span PEs, the frame pointer
and instruction pointer are conveniently segmented by
processing element, TAG = PE:(FP.IP), where PE is the
processing element number and IP and FP are local ad-
dresses on processor PE. Tags and values are both
64-bit quantities and each is appended with eight ad-
ditional bits of run-time type information. A token
is therefore a 144-bit quantity. For tags, the size of
the PE field is eight bits, and FP and IP are 24 bits
each. The machine automatically routes tokens to the
specifed PE, whereupon instruction IP is fetched and
frame FP is accessed. The most significant bit of the
instruction pointer encodes a PORT bit which, for two
input operations, establishes the left/right orientation
of the operands. All activation frame references are lo-
cal and are considered non-blocking-activation frame
reads and writes can take place within the processor
pipeline without introducing arbitrary waits.

A data structure pointer encodes an address on a pro-
cessing element or I-structure memory module. Point-
ers are represented in a ‘normalized” format as the
segmented address PE:OFFSET, where PE denotes the
processing element or I-structure module number and
OFFSET is a local address on the PE or module. Addi-
tionally, pointers contain interleave information, which
describes how the data structure is spread over a collec-
tion of modules. The interleave information describes a
subdomain[4], i.e., collection of 2” processors or mem-
ory modules which starts on a modulo 2” PE number
boundary. If n = 0 then increments to the pointer will
map onto the same PE. If n = 1 then increments to the
pointer alternate between PE and PE+~, and so on.

Following the ETS model, the instruction dictates
the offset in the frame, the kind of matching operation
that will take place (i.e., the state transition function
on a word in frame-store), the operation performed in
the ALU and the way that new result tokens will be
formed. All Monsoon instructions are of uniform, 32-

www.manaraa.com

; : :
I : :
: : :
:
: :
:
: : :
:
:
: : : : :
: . : : 144
:

: lnnwxpssor F! FRW?l
:

r

Monsoon Processing Element

Fetch

<PE:(FP.lP), V>

<PE:(FP

<PE:(FP.lP). Vz 1 lFP+r (opcode,s i

(3 .wzges j
I

IP+s IP+ 1

PE:FP

1

Figure 2: Monsoon Processing Element Pipeline

www.manaraa.com

bit format, with a 1Zbit opcode, a lo-bit operand, and
a IO-bit destination field. The operand field, r, can be
used as a frame-relative address in local frame store,
FP + T, or as an absolute local address, to access lit-
eral constants and procedure linkage information kept
in low memory by convention. The operand and desti-
nation fields can be combined to form a 20-bit address,
as well. Every instruction can have up to two destina-
tions, encoded as an adjustment to IP with an explicit
PORT value. When an operand specifier is used, one of
the destinations is IP+ 1. The opcode completely deter-
mines the interpretation of the other two fields. There
are three presence (or status) bits associated with each
word of memory to support data-driven scheduling.

3.2 Pipeline operation

The right-hand portion of Figure 2 describes the inter-
nal pipeline of the Monsoon processor, which operates
as follows. (1) The IP from the incoming token is used
as an address into local instruction memory. (2) The ef-
fective address of a location in frame-store is computed
(FP + r or r>. (3) The three presence bits associated
with thii frame-store location are read, modified (by a
table lookup), and written back to the same location.
The state transition function represented by the lookup
depends on the port bit on the incoming token and the
instruction opcode. It produces the new presence bits
and two control signals for subsequent pipeline stages:
one dictates whether the operation on the value part
of the associated frame-store location is a read, write,
exchange or no-op, and the other suppresses the gen-
eration of result tokens. For example, when the first
token for a two-input operator is processed, the lookup
specifies a write to the frame-store and supression of
results. (4) Depending on the result of the lookup, the
value part of the specified frame-store location is ig-
nored, read, written, or exchanged with the value on
the token.

The ALU represents three stages and operates in par-
allel with tag generation. (5) The value on the token
and the value extracted from the frame-store are sorted
into left and right values using the port bit of the incom-
ing token. It is also possible to introduce the incoming
tag as one of the ALU operands. (6,7) The operands
are processed by one of the function units: a floating
point/integer unit, a specialized pointer/tag arithmetic
unit, a machine control unit or a type extract/set unit.
Concurrent with the final ALU processing, two new re-
sult tags are computed by the next address generators.

(8) Finally, the form-token stage creates result tokens
by concatenating the computed tags with the ALU re-
sult. During inter-procedure communication (i.e. call
and return values and structure memory operations)
the result tag is actually computed by the ALU. The
form-token multiplexor therefore allows the ALU re-
sult to be the tag of one of the tokens. An extra result

value, a delayed version of the “right” value, is also
available to the form-token multiplexor. This stage de-
tects whether PE of a result token tag is equal to the
present processing element number. If not, the token
is forwarded to the network and routed to the correct
processing element or I-structure module. One of the
(local) result tokens may be recirculated directly to the
instruction fetch stage. If two local tokens are created,
one of the result tokens is placed onto either the sys-
tem or user token queue. If no tokens are created then
a token is dequeued from one of the token queues for
processing.

Consider the processing of a tw*input operator. Ei-
ther the left or right token may be processed first.
The first token to be processed enters the pipeline and
fetches the instruction pointed to by IP. During the ef-
fective address stage the location in frame-store where
the match will take place is computed. The associated
set of presence bits are examined and found to be in the
empty state. The presence state is thus set to full and
the incoming value is written into the frame-store loca-
tion during the frame-store stage. Further processing
of the token is suppressed because the other operand
has yet to arrive. This “bubbles” the pipeline for the
remaining ALU stages; no tokens are produced during
form-token, permitting a token to be removed from one
of the token queues for processing.

The second token to be processed enters the pipeline
and fetches the same instruction. It therefore computes
the same effective address. This time, however, the
presence state is found to be full, so the frame-store
location (which now contains the value of the first to-
ken) is read and both values are processed by the ALU.
Finally, one or two result, tokens are created during the
form-token stage.

4 Evaluation

A single processor Monsoon prototype has been op-
erational at the MIT Laboratory for Computer Sci-
ence since October 1988 and a second prototype is
due to be delivered to the Los Alamos National Lab-
oratories for further evaluation. Except for an inter-
processor network connection, the prototype employs
the synchronous eight stage pipeline and 72-bit data-
paths presented in Section 3. The memory sizes are
fairly modest: 128KWords (72 bits) of frame-store and
128KWords (32 bits) of instruction memory. The pro-
totype was designed to process six million tokens per
second, although we typically clock at one-half this iate
for reliability reasons. The processor is hosted via a
NuBus adapter in a Texas Instruments Explorer lisp
machine. The compiler and loader are written in Com-
mon Lisp and run on the host lisp machine whereas the
runtime activation and heap memory management ker-
nels are written in Id and execute directly on Monsoon.

www.manaraa.com

I

Runtime management has been a particular challenge
for large programs because, lacking an I-structure mem-
ory module, all activation frames and heap data struc-
tures are drawn from the same frame-store memory.
We presently use 128 word activation frames. Free ac-
tivation frames are kept on a shared free-list, so the
frame ah and release operators expand to three in-
structions each. Half of the frame-store memory is ded-
icated to the heap and managed by allocate and deallo-
cate library routines. Two experimental memory man-
agers have been developed for the prototype: a simple
first-fit manager (with coalescing) and a more sophisti-
cated buddy system that permits simultaneous alloca-
tions and deallocations against the various free-lists.

In spite of the serious memory limitations, some sur-
prisingly large codes have been executed on Monsoon,
including GAMTEB, a monte car10 histogramming sim-
ulation of photon transport and scattering in carbon
cylinders. This code is heavily recursive and relatively
difficult to vectorize. On Monsoon, a 40,000 particle
simulation executed a little over one billion instruc-
tions. For comparison purposes, a scalar Fortran ver-
sion of GAMTEB executes 40,000 particles in 250 mil-
lion instructions on a CRAY-XMP. We have found that
about 50% of Monsoon instructions were incurred by
the memory management system (the Fortran version
uses static memory allocation). The remaining over-
head of about a factor of two when compared with For-
tran is consistent with our experience with other codes
on the MIT tagged token dataflow architecture [3]. We
are encouraged by these preliminary data and expect
marked future improvements in the memory manage-
ment system and the overall dynamic efficiency of com-
piled code.

One of the non-scientific codes we have experimented
with is a simulated annealing approach to the traveling
salesperson problem, written in Id, but exercising user-
defined objet t managers. The following statistics are
typical of an iteration from a tour of fifty cities.

Fifty City TSP Tour on MO
Instruction Class 1 Total Cycles

Fanouts and Identities 1 27,507,282
Arithmetic Operations 6,148,860
ALU Bubbles 20,148,890
I-Fetch Operations 3,590,992
I-Store Operations 285,790
Other Operations 8,902,202
Idles 3.503.494

L

oon
Percentages

39.25
a.77

28.75
5.12
0.41

12.70
5.00

1

into a frame slot and and further processing of instruc-
tion is suppressed. Idling occurs during a cycle where
no tokens are produced and the token queues are empty.

The current Monsoon compiler i.s a retargeted version
of the Id to TTDA graph compiler[30] and essen,tially
follows a transliteration of TTDA instructions into the
Monsoon instruction set. It performs the static assign-
ment of nodes to frame slots, but takes little advantage
of the additional power of the ETlS model. As such, we
view the current application base as a proof of principle
more than as a statement of potential performance.

We are now working with the Motorola Microcom-
puter Division and the Motorola Cambridge Research
Center to develop multiprocessor Monsoon prototypes.
The new processors are similar to the first prot+
type but are faster, (10 million tokens per second)
have somewhat larger frame storage, (256KWords to
1MWord) and, significantly, have dedicated I-structure
memory modules (4MWords) and a high-speed multi-
stage packet switch (100 Mbytes/set/port). Versions
comprising eight processors and eight memory modules
and four Unix-based I/O processors should be opera-
tional in the Spring of 1991. Motorola will also be sup-
porting a Unix-based single processor/single memory
module workstation for Id program development.

The ETS activation frame functions much like a con-
ventional register set and, by ignoring the presence-bits,
can be accessed as such. Of course, a single instruc-
tion of a three-address von Neumann processor could
read two registers, perform an operation and write the
result register, whereas Monsoo.n takes three instruc-
tions to accomplish the same action. Monsoon per-
mits only a single frame-store operation per cycle. In
a very real sense, the value part of a token corresponds
to an accumulator-it can be loaded, stored, or oper-
ated upon, in combination with .the local frame. How-
ever, from a hardware engineering viewpoint, the sin-
gle port access to frame-store is an important restric-
tion, since the frame-store simultaneously holds thou-
sands of activation frames; three-port access would be
prohibitively expensive. Competitive implementations
of a Monsoon-like processor would certainly employ a
cache of local frame memory; nonetheless, the single
port frame-store suggests what might be an inherent
inefficiency in the ETS model.

The future architectural development of Monsoon
will continue to explore fundamental improvements in
dynamic instruction efficiency. Part of this work ad-
dresses a basic mismatch in the Monsoon pipeline, that
is characteristic of dataflow architectures. Each twc+
input instruction requires twooperations against frame-

Fanout and identities are used for replicating data store, and thus two processor c,ycles, but only utilizes
values and termination detection. These are roughly the ALU with the arrival of the second token. As sug-
equivalent to move instructions in von Neumann me gested by the statistics above, approximately 30% of
chines. Arithmetic operations include both integer and the ALU cycles are consumed by this mismatch (ALU
floating point operations. ALU bubbles occur when the bubbles). Observe, that a sequence of instructions that
first-arriving operand of a two-input operator is written produce one local result at each step follows the direct

mm

www.manaraa.com

recirculation path, thus occupying one of eight proces-
sor interleaves. The new version of Monsoon provides
a 3 x 72-bit four-port (two read, two write) tempo-
rary register set for each interleave. For simple arith-
metic expressions, the temporary set can improve the
dynamic instruction efficiency (the number cycles re-
quired to compute the expression) by a factor of two.
Note, the temporaries are valid only as long as a thread
has a recirculating token; when a token is first popped
from a queue, the values of the temporaries are inde-
terminate. The temporaries are also invalidated when
performing a split-phase read. These temporaries are
very similar to the register set in Iannucci’s hybrid ar-
chitecture [23].

5 Related Work

In our view, the beauty of the ETS model and its
realization in Monsoon lies in its simplicity, not its
novelty. It draws heavily on developments in dy-
namic and static dataflow architectures, yet demystifies
the data.flow execution model be providing a simple,
concrete, machine-oriented formulation - one simple
enough to build. Activation frames are certainly not a
new idea. The use of presence-bits to detect enabled
operations is represented in the earliest static dataflow
architectures[l5,16,28]. In those designs, instructions
and operand slots were combined into an instruction
template, which was delivered to a function unit when it
was determined that the operand slots were full. Pres-
ence detection was performed by an autonomous unit,
functioning asynchronously with the rest of the system,
rather than simply treated as a stage in an instruc-
tion pipeline. Also, the utilization of the activity store
was poor, because storage was preallocated for every
operand slot in the entire program, even though the
fraction of these containing data at any time is gen-
erally small. Other drawbacks included the complex
firing rule of the merge operator, the need for acknowl-
edgement arcs to ensure one token per sac, loss of par-
allelism due to artificial dependences, and the inability
to support general recursion.

Tagged-token architectures addressed these problems
by naming each activity in terms of its role in the com-
putation, rather than by the resources used to perform
the activity. Iteration and recursion is easily imple-
mented by assigning new names for each activation of
the loop or function. This eliminated the troublesome
merge operator, the acknowledgement arcs, and the ar-
tificial dependences. Storage for operands was allocated
“as needed” via the matching mechanism. In our own
efforts to refine the MIT Tagged-Token Dataflow Archi-
tecture, the association between the name for an activ-
ity and the resources devoted to performing the activity
became ever more immediate. Once state information
was directly associated with each activation, it was a

small step to eliminate the matching store. However,
before it made sense to represent storage for operands
directly, it was necessary to ensure that the utilization
would be reasonable. This involved developments in
compilation of loops[l3], as well as frame-slot mapping.

A separate line of development generalized the static
model by dynamically splicing the graph to support
recursion[32]. VIM[17] advances these ideas by sepa-
rating the program and data portions of the instruc-
tion template, so the splicing operations could be imple-
mented by allocating an operand frame and providing
a form of token indirection. Representation of itera-
tion in this context presents problems and is generally
eliminated in favor of tail-recursion.

The ETS model pulls these three areas together in
an elegant fashion. The power of the tagged-token ap-
proach is provided with a simple mechanism, expressed
in familiar terms. The mechanism is quite close to
that which is used to support I-structures and pro-
vides a uniform means fo representing synchronizing
data structure operations. Since the instruction deter-
mines how the operand store is accessed, it is straight-
forward to realize imperative control threads as well.

Graph reduction architectures provide an additional
reference point, contemporary with the development of
dataflow architectures and addressing a similar class
of languages[l4,25]. The function application mecha-
nism under a reduction model closely resembles graph
splicing, in that a copy of the function body is pro-
duced and arguments substituted where formal param-
eters appear. The copy of the function body can be
viewed as an activation frame, the slots of which con-
tain references to chunks of computation that will even-
tually be reduced to a value. In this sense, state in-
formation is associated with each slot in the frame to
indicate whether it is reduced or not. Parallel graph
reduction architectures require additional mechanisms
for recording requests made for a value while it is being
reduced. By demanding values before they are actually
needed, data-driven scheduling can be simulated[24].
The rather primitive ETS mechanism can be used to
support demand-driven execution as we11[22], although
we have not pursued that direction extensively. A de-
tailed comparison between the two execution models is
beyond the scope of this paper.

Several researchers have suggested that dataflow and
von Neumann machines lie at two ends of an archi-
tectural spectrum[11,19,23,26]. In reflecting upon the
development of Monsoon, our view is somewhat dif-
ferent. Dataflow architectures and modern RISC ma
chines represent orthogonal generalizations of the sin-
gle accumulator “von Neumann” machine. The main-
stream architectural trend enhances the power of a sin-
gle execution thread with multiple addresses per oper-
ation. Dataflow graphs essentially represent multiple
l-address execution threads, with a very simple syn-
chronization paradigm. Having made the transition

89

www.manaraa.com

from propagating values through graphs to “virtual”
processors, we can begin to address the question of
what is the best processor organization to “virtualize.”
Certainly there are gains to be made by incorporat-
ing more powerful operand specification, but this must
be weighed against additional complexity in synchro-
nization. Recently, attention has been paid to multi-
threaded variants of a full 3-address load/store archi-
tecture to tolerate latency on a cache miss[31]. The
proposed techniques range from a four-port register file
to complete replication of the data path. Thus, consid-
erable complexity is contemplated to address only the
latency aspect of parallel computing. It is not obvious
that a simple, inexpensive synchronization mechanism
can be provided in this context. It is likely that the op-
timal building block for scalable, general purpose par-
allel computers will combine the two major directions
of architectural evolution, but may not be extreme in
either direction.

Acknowledgements
This work reflects considerable contributions of

many members and past members of the Compu-
tation Structures Group, led by Prof. Arvind, in-
cluding R. S. Nikhil, Andy Boughton, Ken Traub,
Jonathan Young, Paul Barth, Stephen Brobst, Steve
Heller, Richard Soley, Bob Iannucci, Andy Shaw, Jack
Costanza, and Ralph Tiberio. Special thanks to our
growing user community, including Olaf Lubeck of
LANL, and to Motorola Inc. for their continuing sup-
port.

The research was performed primarily at the MIT
Laboratory for Computer Science and partly at the Uni-
versity of California, Berkeley. Funding for the project
is provided in part by the Advanced Projects Agency
of the Department of Defense under the Office of Naval
Research contract NOOOlP84-K-0099.

References

PI

PI

PI

Arvind and D. E. Culler. Managing Resources in a
Parallel Machine. In PTOC. of IFIP TC-10 Working
Conference on Fifth Generation Computer Archi-
tecture, Manchester, England. North-Holland Pub-
lishing Company, July 1985.

Arvind and D. E. Culler. Dataflow Architectures.
In Annual Reviews in CompvterScience, volume 1,
pages 225-253. Annual Reviews Inc., Palo Alto,
CA, 1986. Reprinted in Dataflow and Reduction
Architectures, S. S. Thakkar, editor, IEEE Com-
puter Society Press, 1987.

Arvind, D. E. Culler, and K. Ekanadham. The
Price of Asynchronous Parallelism: an Analysis
of Dataflow Architectures. In Proc. of CONPAR
88, Univ. of Manchester, September 1988. British

PI

PI

PI

VI

PI

PI

PO1

Pll

P21

WI

Computer Society - Parallel Processing Special-
ists. (also CSG Memo No. 278, MIT Lab for Com-
puter Science).

Arvind, D. E. Culler, R. A. Iannucci, V. Kathail,
K. Pingali, and R. E. Thomas. The Tagged To-
ken Dataflow Architecture. Technical Report FLA
memo, MIT Lab for Computer Science, 545 Tech.
Sq, Cambridge, MA, August 1983. R.evised Octo-
ber, 1984.

Arvind, D. E. Culler, and G. K. Maa. Assessing
the Benefits of Fine-Grain Parallelism in Dataflow
Programs. The Int ‘1 Journal ofSupercomputer.Ap-
plications, 2(3), November 1988.

Arvind, M. L. Dertouzos, R. S. Nikhil, and G. M.
Papadopoulos. PROJECT DATAFLOW, a Par-
allel Computing System Based on the Monsoon
Architecture and the Id Programming Language.
Technical Report CSG Memo 285, MIT Lab for
Computer Science, 545 Tech. Sq, Cambridge, MA,
1988.

Arvind and K. Ekanadham. Future Scientific Pro-
gramming on Parallel Machines. The Journal of
Parallel and Distributed Computing, 5(5):460-493,
October 1988.

Arvind, S. K. Heller, and R. S. Nikhil. Program-
ming Generality and Parallel Computers. In Proc.
of the Fourth Int’l Symp. on Biological and Arti-
ficial Intelligence Systems, pages 255-286, Trento,
Italy, September 1988. ESCOM (Leider).

Arvind and R. A. Iannucci. Two Fundamental
Issues in Multiprocessing. In Proc. of DFVLR -
Conference 1987 on Parallel Processing in Science
and Engineering, Bonn-Bad Godesberg, W. Ger-
many, June 1987.

R. G. Babb II, editor. Programming Parallel
Processors. Addison-Wesley Pub. Co., Reading,
Mass., 1988.

L. Bit. A Process-Oriented Model for Efficient Ex-
ecution of Dataflow Programs. In PTOC. ofthe 7th
Intl Conference on Distribute!d Computing, Berlin,
West Germany, September 1987.

G. Chaitin, M. Auslander, A., Chandra, J. Cocke,
M. Hopkins, and P. Markstein. Register Allocation
via Coloring. Computer Languages, 6:47-57, 1981.

D. E. Culler. Managing Parallelism and Resources
in Scientific Dataflow Programs. PhD Ohesis, MIT
Dept. of Electrical Engineering and Computer Sci-
ence, Cambridge, MA, June 1989. To appear as
MIT Lab for Computer Science TR446.

90

www.manaraa.com

[14] .I. Darlington and M. Reeve. ALICE - A Multi-
Processor Reduction Machine for Parallel Evalu-
ation of Applicative Languages. In Proc. of the
1981 Conference on Functional Programming and
Computer Architecture, pages 65-76, 1981.

[15] J. B. Dennis. Data Flow Supercomputers. IEEE
Computer, pages 48-56, November 1980.

[16] J. B. Dennis and D. P. Misunas. A Preliminary
Architecture for a Basic Dataflow Processor. In

[26] R. S. Nikhil and Arvind. Can Dataflow Sub
sume von Neumann Computing? In Proc. of the
16th Annual Int’l Symp. on Computer Architec-
ture, Jerusalem, Israel, May 1989. To appear.

[27] G. M. Papadopoulos. Implementation of a Gen-
eral Purpose Dataflow Multiprocessor. Technical
Report TR432, MIT Lab for Computer Science,
545 Tech. Sq, Cambridge, MA, September 1988.
(PhD Thesis, Dept. of EECS, MIT).

hoc. Of the 2nd Annual Symp. on Compute2 Ar- [28] J. Rumbaugh.

&lecture, page 126. IEEE, January 1975.
A Data Flow Multiprocessor.

IEEE Transactions on Computers, C-26(2):138-

1171 J. B. Dennis, J. E. Stoy, and B. Guharoy. VIM: 146, February 1977.

An Experimental Multi-User System Supporting
Functional Programming. In Proc. of the 1984

[29] T. Shimada, K. Hiraki, and K. Nishida. An Ar-

lntl Workshop on High-Level Computer Architec-
chitecture of a Data Flow Machine and its Eval-

ture, pages 1.1-1.9, Los Angeles, CA, May 1984.
uation. In Proc. of CompCon 84, pages 486-490.
IEEE, 1984.

[18] D.D. Gajski, D.A. Padua, David J. Kuck, and
R.H. Kuhn. A Second Opinion of Data Flow Ma-
chines and Languages. IEEE Computer, 15(2):58-
69, February 1982.

[19] V. G. Grafe, J. E. Hoch, and Davidson G.S.
Eps’88: Combining the Best Features of von Neu-
mann and Dataflow Computing. Technical Report
SAND88-3128, Sandia National Laboratories, Jan-
uary 1989.

[20] J. Gurd, CC. Kirkham, and I. Watson. The
Manchester Prototype Dataflow Computer. Com-
munications of the Association for Computing Ma-
chinery, 28(1):34-52, January 1985.

[2f] J. L. G us a t f% on, G. R. Montry, and R. E. Ben-
ner. Development of Parallel Methods for a 1024
Processor Hypercube. SIAM Journal on Scientific
and Statistical Computing, 9(4), July 1988.

[22] S. K. Heller. Efficient lazy data-structures
on a dataflow machine. Technical Report
LCS/MIT/TR-438, MIT Lab for Computer Sci-
ence, 545 Tech. Sq, Cambridge, MA, 1988. (PhD
Thesis, Dept. of EECS, MIT).

[23] R. A. Iannucci. A Dataflow/von Neumann Hybrid
Architecture. Technical Report TR-418, MIT Lab
for Computer Science, 545 Tech. Sq, Cambridge,
MA, May 1988. (PhD Thesis, Dept. of EECS,
MIT).

[24] R. M. Keller and F. C. Lin. Simulated Per-
formance of a Reduction-Based Multiprocessor.
IEEE Computer, pages 70-82, July 1984.

[25] R. M. Keller, G. Lindstrom, and S. Patil.
A Loosely-Coupled Applicative Multi-Processing
System. In Proc. of the National Computer Con-
ference, volume 48, pages 613-622, New York, NY,
June 1979.

[30] K. R. Traub. A Compiler for the MIT Tagged-
Token Dataflow Architecture. Technical Report
TR-370, MIT Lab for Computer Science, 545 Tech.
Sq, Cambridge, MA, August 1986. (MS Thesis,
Dept. of EECS, MIT).

[31] W. Weber and A. Gupta. Exploring the Benefits
of Multiple Hardware Contexts in a Multiprocessor
Architecture: Preliminary Results. In Proc. of the
1989 Int’l Symp. on Computer Architecture, pages
273-280, Jerusalem, Israel, May 1989.

1321 K. Weng. An Abstract Implementation for a Gen-
eralized Data Flow Language. Technical Report
MIT/LCS/TR-228, MIT Lab for Computer Sci-
ence, 545 Tech. Sq, Cambridge, MA, 1979. (PhD
Thesis, Dept. of EECS, MIT).

91

